

Chapter 3 Notes

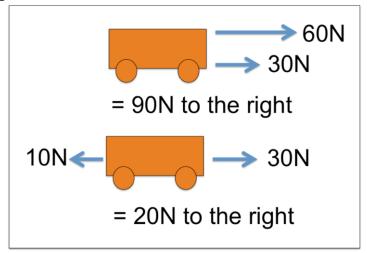
Dynamics

Dynamics

- The study of how objects move and the relationship of this motion to physical concepts e.g. force, mass

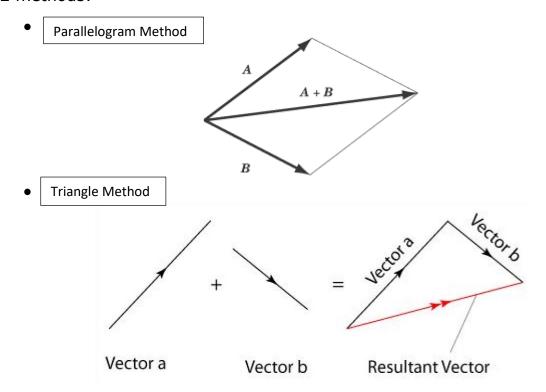
Force

• A force is something capable of changing an object's state of motion


Contact Force physical contact between 2 objects	Field Forces (non-contact forces) - between 2 disconnected objects
Frictional Force	Magnetic Force
Only occurs when there is a <i>capability</i> for something to move	
Normal force	Electrical Force
Must always be <i>perpendicular</i> to surface	
Spring force	Gravitational Force
Tensional force	
Air resistance force	
Applied force	

Chapter 3: Dynamics

Free Body Diagrams


Addition of Vectors

ullet When a number of forces act on an object, we can replace these forces with a single force \to NET/RESULTANT force

Vector Diagrams

2 methods:

Chapter 3: Dynamics

Net force

When net force is...

- Zero
 - Forces of equal magnitude act in opposite direction
 - referred to as balanced forces
 - Combined effect of all the forces is zero, does not mean that there are no forces acting on an object
- Non-zero
 - Forces of unequal magnitude act in different direction
 - referred to as unbalanced forces

Newton's 1st Law (Balanced Forces)

- An object will remain at rest OR continue to move at a constant velocity if there is no resultant force acting on it
- ullet Implies that matter has a built-in reluctance to change its state of rest/motion o INERTIA
 - The mass of a body is a measure of its inertia.
 - A smaller mass will have a smaller inertia.

Newton's 2nd Law (Unbalanced Forces)

• The acceleration of a body is proportional to the net force acting on it and occurs in the direction of the force.

```
F_{net} = ma where Fn_{et} = net force (N)

m = mass (kg)

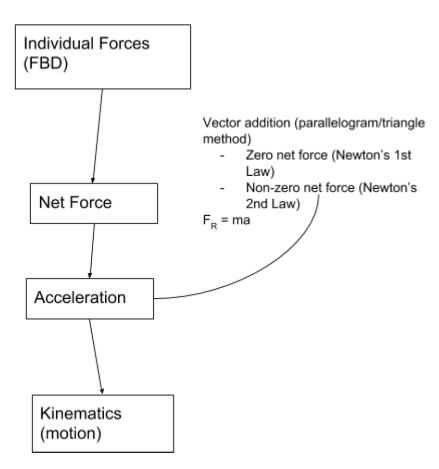
a = acceleration (ms<sup>-2</sup>)
```

 The acceleration produced by the net force will be in the direction of the net force

Newton's 3rd Law

- For every action, there is an equal and opposite reaction
- These forces act on mutually opposite bodies

Chapter 3: Dynamics


- o action = -reaction
- force = -opposite force

Note: - sign represents opposite direction

Friction

- When f (frictional force) is equal to F (applied force), there is no net force acting on the object, so there is no acceleration, and it has a constant velocity
- Applied force = Frictional force + Net force (force applied has to overcome friction)

Summary

