

Geostationary Orbit: above a fixed point on Earth, Satellite in orbit appears stationary to an observer on Earth.

- Period = 24 hours
- Moving along the equatorial plane.
- Moving from west to east.

Gravitation Field

A region of space where a mass will experience a gravitation force.

$$g = \frac{F_g}{m} = G \frac{M}{r^2}$$

Factors affecting measurements of g

- Earth's density is not uniform
- Earth is not a sphere but bulging at the equator
- Rotation of Earth at the equator has centripetal force.

 $g = -rac{d\phi}{dr}$

Gravitational Potential

Work done per unit mass by an external force in bringing a small mass from infinity to a point in a gravitational field without a change in kinetic energy.

$$\phi = \frac{U}{M} = -G\frac{M}{r}$$

 ϕ is always negative. Since the gravitational potential at infinity is taken to be zero, gravitational force is always attractive, and the external force is opposite to the direction of displacement.

Motion and g-field:

Escape Velocity

$$\frac{1}{2}mv_{esc}^2 = G\frac{M_Em}{r} \rightarrow v_{esc} = \sqrt{\frac{2GM_E}{r}}$$

Orbiting Satellite

$$G\frac{M_Em}{r^2} = m\frac{v^2}{r} \rightarrow v = \sqrt{\frac{GM_E}{r}}$$

Or

$$G \frac{M_E m}{r^2} = mr\omega^2 \rightarrow T^2 = \frac{4\pi}{GM_E} R^3 \rightarrow T^2 \propto R^3$$

Total Mechanical Energy of Satellite

$$TE = KE + GPE = \frac{1}{2}mv^2 - G\frac{M_Em}{r} = -G\frac{M_Em}{2r}$$

Chapter 7 Gravitation