

ALTERNATING CURRENT

A.C.: Charge carriers periodically reverse their direction of motion.

Transformers (To know how they work based on principles of EMI.) If no power loss and both coils have the same magnetic flux through them,

Voltage to turns ratio

Combining the above equations, For **ideal** transformers:

$$\frac{N_P}{N_S} = \frac{V_P}{V_S} = \frac{I_S}{I_P}$$

For step-up transformer, $N_{\rm s} > N_{\rm p} \Rightarrow V_{\rm s} > V_{\rm p}$. For step-down transformer, $N_{\rm s} < N_{\rm p} \Rightarrow V_{\rm s} < V_{\rm p}$ In real life, power loss due to:

i) heating in coil due to resistance and in iron core due to eddy currents

ii) Hysteresis effect due to repeated change in magnetization and demagnetization of core

Power losses in transmissions Power losses in line is mostly due to I²R losses For lower power loss, use higher voltage lines. Total resistance of cables R Power Station p.d. p.d. V_{gen} p.d. V_{gen} p.d. V_{gen} p.d. V_{gen} p.d. V_{gen} P_{gen} $P_{H} + P_{loss}$; $V_{gen} = V_{H} + V_{loss}$ $P_{loss} = I^{2}R = (P_{gen} / V_{gen})^{2}R$

Rectification is conversion of a.c. to d.c. e.g. using diodes

Half-wave rectification

Output waveform follows the waveform of supply input.