Thermal Physics Revision Checklist (2020)

Sub-topics	Key concepts/ questions		Tick
Definitions	Thermal Equilibrium, Absolute Zero, Triple Point of Water,		
	Thermodynamic scale vs Empirical scale,		
	Heat Capacity, Specific Heat Capacity, Specific Latent Heat of Fusion, Specific Latent Heat of Vaporisation,		
	mole, Avogadro number ($N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$), Ideal gas		
	Internal energy, First Law of Thermodynamics		
Formulae			
	Conversion:	$T/K = T/^{\circ}C + 273.15$	
	Heat capacity C:	$Q = C \varDelta \theta$	
	Specific heat capacity c:	$Q = m c \Delta \theta$	
	Specfic latent heat I:	Q = m I	
	Expressions considering heat/power lost to	$Q = m c \Delta\theta + h_{\rm loss}$	
	surroundings	$P = m c \Delta \theta / t + P_{loss}$	
	Ideal Gas Equations:	pV = nRT	
		pV = NkT	
	First Law of	$\Delta U = q + w$	
	Work done by system at	$W_{hy} = \rho \Delta V$	
	constant pressure		
	Work done on system at constant pressure	$w_{on} = -p\Delta V$	
	· · · · · · · · · · · · · · · · · · ·	·	
Simple kinetic model for matter	 Explain using simple kinetic model for matter why melting and boiling takes place without a change in temperature, the specific latent heat of vaporisation is higher than specific latent heat of fusion for the same substance, cooling effect accompanies evaporation. 		
Kinetic theory of gases	 State basic assumptions of the kinetic theory of gases. Explain how molecular movement causes the pressure exerted by a gas. Derive relationship <i>pV</i> = 1/3 <i>Nm</i><<i>c</i>²> 		

Kinetic energy of	Mean KE of <u>a molecule</u> of an ideal gas is proportional to the		
a molecule	thermodynamic temperature.		
	<ke> ∞ T</ke>		
	$\langle KE \rangle = \frac{1}{2} m \langle c^2 \rangle = 3/2 kT$		
Internal Energy	Internal energy is <u>determined by the state of the system</u> and it can be expressed as the <u>sum of random distribution of kinetic and</u> <u>potential energies associated with the molecules of a system.</u>		
	U = molecular K.E + molecular P.E		
	For an ideal gas (<i>negligible molecular PE</i>),		
	U = molecular K.E = 3/2 NkT = 3/2 pV		
1 st Law of Thermodynamics	The first law of thermodynamics states that the <u>internal energy is</u> <u>a function of state</u> and the <u>increase in internal energy</u> is equal to the <u>sum of heat supplied to the system and the work done on the</u>		
	$\Delta U = q + w$		
<i>p</i> -V graph	• Represent thermodynamics states (e.g. states A, B, C as illustrated below) and thermodynamic changes (e.g. process A to B) for a fixed mass (fixed no. of moles) of an ideal gas. p/Pa p/Pa		
	 To note: Pressure, volume, and temperature values as indicated for a particular thermodynamic state. Isotherms represent lines joining points of the same temperature. Work done = area under <i>p</i>-<i>V</i> graph Special thermodynamic processes: isochoric (Δ<i>V</i> = 0), isobaric (Δ<i>p</i> = 0), isothermal (Δ<i>T</i> = 0), adiabatic (<i>q</i> = 0), cyclic (Δ<i>U</i> = 0). Apply ideal gas law and first law of thermodynamics. 		