	[
		•	namics .aws of Motion	1	
Newton's 1 st Law A body will continue in its state of rest or move with uniform velocity unless a resultant force acts on it. The tendency for bodies to resist changes in motion is called <i>inertia</i> Mass is the property of a body which resists change in motion, i.e. a measure of inertia of a body	Newton's 2 nd Law The rate of change of momentum of a body is directly proportional to the resultant force acting on it and the change takes place in the direction of the resultant force. $F_{net} \propto \frac{dp}{dt} \implies F_{net} = k \frac{dp}{dt}$ If quantities are in SI units, $F_{net} = \frac{dp}{dt}$ Thus, force acting on a body is defined as the rate of change of momentum of the body. If mass is constant $F_{net} = ma$			is directly t and the sultant force.	<u>Newton's 3rd Law</u> If body A exerts a force (action) on body B, then body B exerts a force of the same kind, equal in magnitude, but in the opposite direction on body A. Action-Reaction Pairs: 1. The two forces must be of the same kind 2. The two forces act on different bodies
Linear Momentum and Impulse The linear momentum of a moving object is defined					<u>Weight</u> Weight of a body is the gravitational force acting on the body.
as the product of its mass and its velocity. p = mv Linear momentum is a vector quantity and its direction follows the direction of the velocity.	If mass is constant, $F_{net} = ma$ If velocity is constant, $F_{net} = v \frac{dm}{dt}$ Direction of the acceleration or the change in momentum is in the same direction of the resultant force.				<u>Apparent Weightlessness</u> A body is said to be experiencing apparent weightlessness if the resultant force acting on it is its weight (mg) and its acceleration, a, is equal to g
Impulse of a force is defined as the product of the force and the time during which the force acts (time of impact).	Conservation of Linear Momentum and Collisions				
Impulse of a resultant force = $p_{\text{final}} - p_{\text{initial}}$ = Area under a (resultant) force-time graph		Conservation of mentum of a sy		emains constant p	rovided no external resultant force acts on the
Impulse is a vector quantity.	Type of Collision	Total Linear Momentum	Total Kinetic Energy	Remarks	Laws to Apply
 Problem solving for <i>F_{net}</i> = <i>ma</i> questions 1. Draw free body diagram(s) with the forces acting on the body 2. Identify and indicate the acceleration direction 	Elastic	Conserved	Conserved		1. $\sum p_{initial} = \sum p_{inal}$ 2. $u_1 - u_2 = v_2 - v_1$ or $\sum KE_{initial} = \sum KE_{inal}$
3. Form an equation of $F_{net} = ma$	Inelastic	Conserved	Not Conserved		$\sum p_{initial} = \sum p_{inal}$
4. If need to resolve the forces, form equations for each perpendicular component separately	Completely Inelastic	Conserved	Not Conserved	bodies stick togeth after collision	her $\sum p_{initial} = \sum p_{final}$

- Form an equation of *F_{net}* = *ma* If need to resolve the forces, form equations for each perpendicular component separately

D1