Moment or torque τ

- $\tau=\mathrm{F} \mathrm{d}$ (find perpendicular distance or force)
- Torque of a couple is product one of the forces and the perpendicular distance between the lines of action of the forces

Spring/Elastic force (for extension and compression)

$$
\begin{aligned}
& \text { Pressure due to fluid } \\
& p=\rho g h, \quad p_{\text {total }}=p_{\text {atm }}+\rho g h
\end{aligned}
$$

H2 only:

Upthrust (buoyant force)

$\mathrm{U}=\mathrm{m}_{\mathrm{f}} \mathrm{g}$ (wt of fluid displaced) $=\rho_{\mathrm{f}} \mathrm{V}_{\mathrm{f}} \mathrm{g}$

Principle of flotation

Object floating in equilibrium: wt of object = upthrust

Free Body Diagram (FBD)

- Draw all forces acting on the body.
- Length \& direction of arrow \Rightarrow Magnitude \& direction of force
- Arrow starts from correct point/surface of contact
- Concurrent point: three non-parallel forces acting on body in equilibrium

Conditions for (static) equilibrium

1) Resultant force in any direction is zero (translational equilibrium, $\Sigma F=0$)
2) Resultant torque about any point is zero (rotational equilibrium, $\Sigma \tau=0$)

Problem solving

- Draw FBD

- Use vector diagram (closed vector triangle) to represent forces in equilibrium or resolve forces (horiz \& vert or perpendicular \& along slope)
- Take moments about appropriate point (e.g. where unknown force acts)
- Apply $F_{\text {net }}=0 \& \tau_{\text {net }}=0$
- Calculate from vector diagram or from resolved components

Drag / Viscous force

- Force resisting a body moving relative to a fluid (e.g. air resistance)
- Always oppose motion
- Magnitude depends on speed of the body, density of the fluid, crosssectional area, the shape of the body

